Revealing Local Order via High Energy EELS

Materials Today Nano(2022)

引用 4|浏览13
暂无评分
摘要
Short range order (SRO) is critical in determining the performance of many important engineering materials. However, accurate characterization of SRO with high spatial resolution – which is needed for the study of individual nanoparticles and at material defects and interfaces – is often experimentally inaccessible. Here, we locally quantify SRO via scanning transmission electron microscopy with extended energy loss fine structure analysis. Specifically, we use novel instrumentation to perform electron energy loss spectroscopy out to 12 keV, accessing energies which are conventionally only possible using a synchrotron. Our data is of sufficient energy resolution and signal-to-noise ratio to perform quantitative extended fine structure analysis, which allows determination of local coordination environments. To showcase this technique, we investigate a multicomponent metallic glass nanolaminate and locally quantify the SRO with <10 nm spatial resolution; this measurement would have been impossible with conventional synchrotron or electron microscopy methods. We discuss the nature of SRO within the metallic glass phase, as well as the wider applicability of our approach for determining processing–SRO–property relationships in complex materials.
更多
查看译文
关键词
local order,high energy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要