Deep accumulation of soluble organic nitrogen after land-use conversion from woodlands to orchards in a subtropical hilly region.

The Science of the total environment(2022)

引用 1|浏览21
暂无评分
摘要
Accumulation of soluble organic nitrogen (SON) in soil poses a significant threat to groundwater quality and plays an important role in regulating the global nitrogen cycle; however, most related studies have focused only on the upper 100-cm soil layers. Surface land-use management and soil properties may affect the vertical distribution of SON; however, their influence is poorly understood in deep soil layers. Therefore, this study assessed the response of SON concentration, pattern, and storage in deep regoliths to land-use conversion from woodlands to orchards in a subtropical hilly region. Our results showed that the SON stocks of the entire soil profile (up to 19.5 m) ranged from 254.5 kg N ha-1 to 664.1 kg N ha-1. Land-use conversion not only reshaped the distribution pattern of SON, but also resulted in substantial accumulation of SON at the 0-200 cm soil profile in the orchards compared to that in the woodlands (124.1 vs 190.5 kg N ha-1). Land-use conversion also altered the SON/total dissolved nitrogen ratio throughout the regolith profile, resulting in a relatively low (<50 %) ratio in orchard soils below 200 cm. Overall, 76.8 % of SON (338.4 ± 162.0 kg N ha-1) was stored in the layers from 100 cm below the surface to the bedrock. Regolith depth (r = -0.52 and p < 0.05) was found to be significantly correlated with SON concentration, explaining 17.8 % of the variation in SON, followed by total nitrogen (14.4 %), total organic carbon/total nitrogen ratio (10.1 %), and bulk density (9.3 %). This study provides insights into the estimation of terrestrial nitrogen and guidance for mitigation of groundwater contamination risk due to deep accumulation of SON.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要