Caveolin-1 dolines form a distinct and rapid caveolae-independent mechanoadaptation system

Nature Cell Biology(2022)

引用 29|浏览28
暂无评分
摘要
In response to different types and intensities of mechanical force, cells modulate their physical properties and adapt their plasma membrane (PM). Caveolae are PM nano-invaginations that contribute to mechanoadaptation, buffering tension changes. However, whether core caveolar proteins contribute to PM tension accommodation independently from the caveolar assembly is unknown. Here we provide experimental and computational evidence supporting that caveolin-1 confers deformability and mechanoprotection independently from caveolae, through modulation of PM curvature. Freeze-fracture electron microscopy reveals that caveolin-1 stabilizes non-caveolar invaginations—dolines—capable of responding to low-medium mechanical forces, impacting downstream mechanotransduction and conferring mechanoprotection to cells devoid of caveolae. Upon cavin-1/PTRF binding, doline size is restricted and membrane buffering is limited to relatively high forces, capable of flattening caveolae. Thus, caveolae and dolines constitute two distinct albeit complementary components of a buffering system that allows cells to adapt efficiently to a broad range of mechanical stimuli. Lolo et al. show caveolin-1 functions in non-caveolae structures termed dolines. Whereas caveolae respond to high forces over a mechanical threshold, dolines transduce low and medium mechanical forces gradually in a complementary buffering system.
更多
查看译文
关键词
Cell biology,Membrane biophysics,Life Sciences,general,Cell Biology,Cancer Research,Developmental Biology,Stem Cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要