Evaluation of dry matter content in intact potatoes using different optical sensing modes

Journal of Food Measurement and Characterization(2022)

引用 0|浏览1
暂无评分
摘要
Potatoes are generally consumed directly as a staple food or used for processing, depending on the quality of raw materials. Dry matter content (DMC) is the most critical characteristic of potatoes, as it determines the processing and the final product quality. This study aimed to investigate the potential of different optical sensing systems in predicting the DMC of intact potato tubers, and the efficacy of classifying potatoes based on dry matter levels. The whole tubers were scanned using three optical sensing modes (transmittance spectra, interactance spectra and hyperspectral imaging). PLSR and different classifiers (PLSDA, SVM and ANN) were utilized to build the prediction and classification models, respectively. To extract the most influential wavelengths related to the prediction of DMC, the CARS and CSMW techniques were applied. The results indicated that the DMC of two sections on the equator of the potato tuber belly can well represent the DMC of the intact potato, and together with the spectral detection at the equatorial position, it provided good performance. The CARS-PLSR prediction model in transmittance mode showed stronger correlations than other systems, with R p and RMSEP values of 0.968 and 0.413%, respectively. The CARS-SVM-Linear classification model exhibited the best performance with classification rates of 100% and 97.62% in the training and testing sets, respectively. Moreover, the spectra preferred by CARS and CSMW variable selection methods in transmittance mode overlapped near the absorption peak at 980 nm, indicating the importance of this band for predicting DMC. This study presented the feasible application of using spectroscopy to evaluate the DMC of intact potatoes and classify potatoes based on thresholds that are crucial to consumers and food processors. Graphical abstract
更多
查看译文
关键词
Potato,Dry matter,Prediction,Classification,Near-infrared spectroscopy,Wavelength selection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要