谷歌浏览器插件
订阅小程序
在清言上使用

Separate and Joint Clustering Characteristics of Large-Stokes-number Sprays Subjected to Turbulent Co-Flows

Journal of fluid mechanics(2023)

引用 0|浏览12
暂无评分
摘要
Separate and joint droplets, clusters, and voids characteristics of sprays injected in a turbulent co-flow are investigated experimentally. Simultaneous Mie scattering and interferometric laser imaging for droplet sizing along with separate hotwire anemometry are performed. The turbulent co-flow characteristics are adjusted using zero, one or two perforated plates. The Taylor-length-scale-based Reynolds number varies from 10 to 38, and the Stokes number estimated based on the Kolmogorov time scale varies from 3 to 25. The results show that the mean length scale of the clusters normalized by the Kolmogorov length scale varies linearly with the Stokes number. However, the mean void length scale is of the order of the integral length scale. It is shown that the number density of the droplets inside the clusters is approximately 7 times larger than that in the voids. The ratios of the droplets number densities in the clusters and voids to the total number density are independent of the test conditions and equal 5.5 and 0.8, respectively. The joint probability density function of the droplets diameter and clusters area shows that the droplets with the most probable diameter are found in the majority of the clusters. It is argued that intensifying the turbulence broadens the range of turbulent eddy size in the co-flow which allows for accommodating droplets with a broad range of diameters in the clusters. The results are of significance for engineering applications that aim to modify the clustering characteristics of large-Stokes-number droplets sprayed into turbulent co-flows.
更多
查看译文
关键词
particle,fluid flow
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要