Emulating Titin by a Multidomain DNA Structure.

ACS macro letters(2022)

引用 4|浏览4
暂无评分
摘要
Titin, a giant protein containing multiple tandem domains, is essential in maintaining the superior mechanical performance of muscle. The consecutive and reversible unfolding and refolding of the domains are crucial for titin to serve as a modular spring. Since the discovery of the mechanical features of a single titin molecule, the exploration of biomimetic materials with titin-emulating modular structures has been an active field. However, it remains a challenge to prepare these modular polymers on a large scale due to the complex synthesis process. In this study, we propose modular DNA with multiple hairpins (MH-DNA) as the fundamental block for the bottom-up design of advanced materials. By analyzing the unfolding and refolding dynamics of modular hairpins by atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS), we find that MH-DNA shows comparable stability to those of polyproteins like titin. The unique low hysteresis of modular hairpin makes it an ideal molecular spring with remarkable mechanical efficiency. On the basis of the well-established DNA synthesis techniques, we anticipate that MH-DNA can be used as a promising building block for advanced materials with a combination of superior structural stability, considerable extensibility, and high mechanical efficiency.
更多
查看译文
关键词
multidomain dna structure,titin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要