Study on modified poplar wood powder/polylactic acid high toughness green 3D printing composites.

Mingru Kong, Zheng Qin,Ping Zhang,Guangqiang Xie, Hao Wang, Jun Wang, Fulong Guan, Weizhen Yang,Zhaowen Qiu

International journal of biological macromolecules(2022)

引用 4|浏览42
暂无评分
摘要
In order to alleviate environmental pollution and the shortage of petroleum resources, improve the utilization of renewable materials, the research of biodegradable green composite materials has become a research hotspot. In this paper, Poplar Wood powder(PWP) and Polylactic acid(PLA) were selected, adding poly lactic acid graft maleic anhydride (MPLA) and Silane coupling agent KH-550 (KH550) as a compatibilizer and coupling agent to improve interface compatibility, at the same time, poly Butylenedioate-co-terephthalate (PBAT) and poly Butylene Succinate (PBS) were added to improve the toughness of the composites. The experimental results show that, the impact strength of 20 %-KMPP/PBAT/PBS composite modified by MPLA and KH550 was 20.70 kJ/m-2. Secondly, the hydrophobic angle of the composite material is as high as 112°. It is found that the high content of PWP with small particle size (200 mesh) can make it more evenly dispersed in the composite material, and the cross section of the composite material was smooth. The modified composite was 4.24$/kg, which reduced the cost by 28.07 %. The research results have opened up a new way to develop 3D printed biomass composites with low cost, high compatibility, high toughness and good environmental adaptability, and broadened the application scope and value of the composites.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要