Chrome Extension
WeChat Mini Program
Use on ChatGLM

A Bayesian Estimation Formulation to Voxel-Based Lesion-Symptom Mapping.

European Signal Processing Conference (EUSIPCO)(2022)

Univ Orleans | Univ Toulouse | Ctr Hosp Reg Orleans

Cited 0|Views3
Abstract
Studying brain-injured patients is important for investigating structure-function relationships using neuroimaging techniques. Voxel-based lesion-symptom mapping (VLSM) has increasingly been advocated as a relevant approach to detect structure-function associations in neuroimaging studies. The VLSM method involves mapping the relationship between brain injuries and behavioral performance on a voxel-by-voxel basis. This means that the statistical relationship between damage and behavior (across patients) is computed separately for each voxel. However, one could expect voxels characterizing group differences to be localized into spatially consistent regions rather than randomly distributed over the brain. Thus, in this paper, we propose to depart from conventional models to characterize and exploit this spatial consistency. More precisely, we derive a Bayesian model that explicitly accounts for spatial correlations between neighboring voxels using a Markov random field. Our results highlight that the proposed approach outperforms the conventional ones. Besides, it has the great advantage of possibly reducing the number of patients and identifying new language areas, which are two crucial insights in the targeted medical context.
More
Translated text
Key words
Bayesian inference,Markov random field,stroke,LAST test
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest