Photoinduced chlorophyll charge transfer state identified in the light-harvesting complex II from a marine green alga Bryopsis corticulans

iScience(2023)

引用 1|浏览22
暂无评分
摘要
The light-harvesting complex II of Bryopsis corticulans (B-LHCII), a green alga, differs from that of spinach (S-LHCII) in chlorophyll (Chl) and carotenoid (Car) compositions. We investigated ultrafast excitation dynamics of B-LHCII with visible-to-near infrared time-resolved absorption spectroscopy. Absolute fluorescence quantum yield (ΦFL) of LHCII and spectroelectrochemical (SEC) spectra of Chl a and b were measured to assist the spectral analysis. Red-light excitation at Chl Qy-band, but not Car-band, induced transient features resembling the characteristic SEC spectra of Chl a⋅+ and Chl b⋅−, indicating ultrafast photogeneration of Chl-Chl charge transfer (CT) species; ΦFL and 3Car∗ declined whereas CT species increased upon prolonging excitation wavelength, showing positive correlation of 1Chl∗ deactivation with Chl-Chl CT formation. Moreover, ultrafast Chl b-to-Chl a and Car-to-Chl singlet excitation transfer were illustrated. The red-light induction of Chl-Chl CT species, as also observed for S-LHCII, is considered a general occurrence for LHCIIs in light-harvesting form.
更多
查看译文
关键词
green chemistry,environmental chemical engineering,biodevices
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要