Chrome Extension
WeChat Mini Program
Use on ChatGLM

Microstructural and Oxidation Effects on Fatigue Crack Initiation Mechanisms in a Turbine Disc Alloy

Journal of Materials Science(2023)

Cited 0|Views12
No score
Abstract
Effects of microstructure and oxidation on fatigue crack initiation and early propagation processes were investigated in RR1000 turbine disc alloy with different γ′ distributions and carbide distributions on the grain boundary. Fatigue tests were carried out under three-point bending and trapezoidal waveform loading (with a 90 s dwell) at 650 °C in air. The failure mode in both γ′ variants is clearly characterised by intergranular features. A number of fatigue cracks are seen to initiate at grain boundaries with bulged Co-rich oxides at the surface and/or interfaces between carbides and grain boundaries, resulting from oxidation damage assisted by applied loading. Reduced lifetime is closely linked to significant intergranular crack initiation and frequent consequent crack coalescence events, which results in enhanced fatigue crack growth (FCG) rates. The extent of intergranular features and enhanced FCG are more marked where more continuous carbides exist at the grain boundary.
More
Translated text
Key words
Multiaxial Fatigue Criterion,Microstructures,Fatigue Crack Closure,Fracture Toughness Testing,High-Cycle Fatigue Behavior
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined