Future Köppen-Geiger climate zones over Southeast Asia using CMIP6 Multimodel Ensemble

Atmospheric Research(2023)

引用 4|浏览17
暂无评分
摘要
A possible shift in climate zones in Southeast Asia (SEA) for different shared socioeconomic pathways (SSPs) is evaluated in this study. The ability of 19 Coupled Model Intercomparison Project (CMIP6) global climate models (GCMs) in reconstructing the Köppen-Geiger climate zones in SEA, estimated using reanalysis data (ERA5) for the period 1979-2014, was analysed using five categorical evaluation metrics. The best-performing models were selected to prepare an ensemble to project possible shifts in climate zones for different SSP scenarios in the future. Besides, future projections in climate variables were evaluated to assess the driving factor of climate shifts in the future. The results showed that three CMIP6 GCMs, EC-Earth3-Veg-LR, CMCC-ESM2 and CanESM5, had a higher skill in classifying the observed climate of SEA. Selected GCMs showed climate shifting in 3.4 to 12.6% of the total area of SEA for different SSPs. The highest geographical shift in climate was projected in the north, from dry winter and hot summer (Cwa) to tropical with dry winter (Aw), followed by Aw to tropical monsoon (Am) in the north and south, and tropical without dry season (Af) to Am in the middle and southwest of SEA. An increase in minimum temperature was the key to climate shifting from Cwa to Aw in the north, while increased rainfall was a reason for Aw to Am transition in the north and south. Overall, climatic shifting was higher for high emission scenarios. The maps of future climate zones generated in this study can help to identify the hotspots of ecologically vulnerable areas in SEA due to climate change.
更多
查看译文
关键词
Köppen-Geiger climate classification,Global climate models,Shared socioeconomic pathways,Spatial metrics,Climate shifts
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要