Organocatalytic Enantioselective Thermal [4 + 4] Cycloadditions.

Journal of the American Chemical Society(2023)

引用 5|浏览0
暂无评分
摘要
Chiral eight-membered carbocycles are important motifs in organic chemistry, natural product chemistry, chemical biology, and medicinal chemistry. The lack of synthetic methods toward their construction is a challenge preventing their rational design and stereoselective synthesis. The catalytic enantioselective [4 + 4] cycloaddition is one of the most straightforward and atom-economical methods to obtain chiral cyclooctadiene derivatives. We report the first organocatalytic asymmetric [4 + 4] cycloaddition of 9-fluorene-1-carbaldehydes with electron-deficient dienes affording cyclooctadiene derivatives in good yields and with excellent control of peri-, diastereo-, and enantioselectivities. The reaction concept is based on the aminocatalytic formation of a polarized butadiene component incorporated into a cyclic extended π-system, with restricted conformational freedom, allowing for a stereocontrolled [4 + 4] cycloaddition. FMO analysis unveiled that the HOMO and LUMO of the two reacting partners resemble those of butadiene. The methodology allows for the construction of cyclooctadiene derivatives decorated with various functionalities. The cyclooctadienes were synthetically elaborated, allowing for structural diversity demonstrating their synthetic utility for the formation of, for example, chiral cyclobutene- or cyclooctane scaffolds. DFT computational studies shed light on the reaction mechanism identifying the preference for an initial but reversible [4 + 2] cycloaddition delivering an off-cycle catalyst resting state, from which catalyst elimination is not possible. The off-cycle catalyst-bound intermediate undergoes a retro-[4 + 2] cycloaddition, followed by a [4 + 4] cycloaddition generating a cycloadduct from which catalyst elimination is possible. The reaction pathway accounts for the observed peri-, diastereo-, and enantioselectivity of the organocatalytic [4 + 4] cycloaddition.
更多
查看译文
关键词
organocatalytic enantioselective thermal,cycloadditions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要