Stretchable and biodegradable chitosan-polyurethane-cellulose nanofiber composites as anisotropic materials

International Journal of Biological Macromolecules(2023)

引用 3|浏览5
暂无评分
摘要
Chitosan is a naturally derived biodegradable polymer with abundancy, sustainability, and ease of chemical modification. Polyurethanes are a family of elastic biocompatible polymers, and composites of polyurethanes have versatile properties and applications. Chitosan-polyurethane composites were recently developed but had insufficient strength and limited stretchability. In the current study, cellulose nanofibers (CNFs) were integrated in chitosan-polyurethane composites to prepare stretchable and anisotropic materials. A biodegradable polyurethane was first synthesized, end-capped with aldehyde to become dialdehyde polyurethane (DP) nanoparticles, and added with CNFs to prepare the DP-CNF composite crosslinker (DPF). The waterborne DPF crosslinker was then blended with chitosan solution to make polyurethane-CNF-chitosan (DPFC) composites. After blending, DPFC may form hydrogel in ~33 min at room temperature, which confirmed crosslinking. Composite films cast and dried from the blends showed good elongation (~420.2 %) at 60 °C. Anisotropic films were then generated by tension annealing with pre-strain. The annealed films with 200 % pre-strain exhibited large elastic anisotropy with ~4.9 anisotropic ratio. In situ SAXS/WAXS analyses unveiled that rearrangement and alignment of the microstructure during tension annealing accounted for the anisotropy. The anisotropic composite films had the ability to orient the growth of neural stem cells and showed the potential for biomimetic and tissue engineering applications.
更多
查看译文
关键词
Cellulose nanofiber,Chitosan,Polyurethane,Stretchable films,In situ SAXS/WAXS
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要