Preparation of chitosan-sodium alginate/bioactive glass composite cartilage scaffolds with high cell activity and bioactivity

Ceramics International(2023)

引用 3|浏览6
暂无评分
摘要
Chitosan-sodium alginate/bioactive glass (CSB) composite cartilage scaffold with outstanding in vitro mineralization property and cytocompatibility is synthesized by freeze drying method. The effect of bioactive glass (BG) addition on the microstructure, porosity, swelling/degradation ratio, in vitro mineralization property and cytocompatibility of CSB scaffold is investigated by the characterization techniques of SEM, XRD, FTIR and BET. Results showed that CSB composite cartilage scaffold had a three-dimensional (3D) porous structure, and both porosity and average pore size met the requirements of cartilage tissue repair. Among, the typical CSB-1.0 had the largest overall pore size and lowest compressive modulus (1.083 ± 0.002 MPa). As the amount of BG increased, pore volume and porosity of CSB scaffolds gradually decreased, and the swelling and degradation ratios gradually reduced. After immersing in SBF for 3 d, cauliflower like hydroxyapatite (HA) was formed on CSB surface, indicating that the scaffold had good in vitro mineralization property. Moreover, the introduction of BG into the composite scaffold can improve the relative cell viability of MC3T3-E1 cells, and CSB-1.0 has the strongest ability to promote the proliferation of cells. Therefore, the as-obtained CSB scaffold can be used as a strong candidate for cartilage tissue engineering scaffold to meet clinical needs.
更多
查看译文
关键词
CBS composite Cartilage scaffold,Vitro mineralization property,Cytocompatibility,Freeze-drying method,Cartilage tissue engineering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要