谷歌浏览器插件
订阅小程序
在清言上使用

Constructing Metal-Organic Framework-Derived Carbon Incorporated V2O5 Nanowire-Bundle Arrays on Carbon Nanotube Fiber As Advanced Cathodes for High-Performance Wearable Zinc-Ion Batteries

Electrochimica acta(2023)

引用 4|浏览26
暂无评分
摘要
Fiber-shaped energy storage devices with light weight, superflexibility, and weavability demonstrate promising prospects for application in wearable and portable electronics. Especially, fiber-shaped aqueous rechargeable zinc ion batteries (FARZIBs), which can facilitate the development of wearable electronic products owing to their high safety, low cost, environmental friendliness. Nevertheless, it is very challenging to achieve high rate capability, energy density, and cycling performance simultaneously for the FARZIBs. Herein, a high-performance FARZIB is created from vanadium-based metal-organic frameworks (MOFs) derived vanadic oxide (V2O5) nanowire-bundle arrays (NBAs) grown on highly conductive carbon nanotube fibers (CNTFs) directly as the binder-free cathode. Profiting from high specific area and porous structure of MOFs, as well as arrays structure and binder-free features, our as-assembled FARZIBs exhibited a high capacity of 0.71 mAh cm(-2) at a current density of 2 mA cm-2, and demonstrated outstanding rate capability and prominent cycling performance. Moreover, the FARZIBs delivered an extremely high energy density of 215 mWh cm(-3) at a power density of 600 mW cm(-3). Therefore, our work brings new prospects for the next generation of wearable electronics.
更多
查看译文
关键词
Metal-organic frameworks,V2O5@C,Nanowire-bundle arrays,Binder-free,Zinc ion batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要