Bulk oxygen release inducing cyclic strain domains in Ni-rich ternary cathode materials

Energy Storage Materials(2023)

引用 2|浏览6
暂无评分
摘要
Nickel-rich layered transition metal oxide is limited by the poor structural stability during cycling as cathode materials for next-generation lithium-based automotive batteries. In the past, the poor electrochemical performance was mainly attributed to cracks and formation of rock-salt phase on the particle surface at high potentials. Rarely is the effect of bulk phase structure evolution on properties discussed. Here, we report a bulk oxygen release induced dynamic accumulative electrochemical–mechanical coupling failure mechanism. Domain-like rock salt phases are generated due to the oxygen release and transition metals migration in the bulk region of LiNi0.6Co0.2Mn0.2O2 (NCM622) particles at the first cycle high cutoff voltage. Then, reversible compressive/tensile lattice strain alternately dominate around the domain boundary and accumulate with cycling, leading to capacity fading and becoming the origin of intracrystalline cracks. The results suggest that, in addition to the side effects from the surface, the structural transformation of the bulk plays an important role in the capacity fading. The stabilization of lattice oxygen in bulk region is a feasible solution to suppress the structural transition and the inhomogeneous stress distribution.
更多
查看译文
关键词
Bulk oxygen release,Strain domain,Intracrystalline crack,NCM622,STEM
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要