Photodegradation and Mineralization of Phenol Using TiO2Coated γ-Al2O3: Effect of Thermic Treatment

Processes(2022)

引用 0|浏览7
暂无评分
摘要
It is well-known that γ-Al2O3 possesses large, specific areas and high thermal, chemical, and mechanical resistance. Due to this, it is the most-used support for catalysts, in this case TiO2, as it enables it to achieve better dispersion and improves the activity in catalytic photodegradation reactions. In a previous work, it was observed that the optimal content of TiO2 in γ-Al2O3 was around 15% since the degradation of phenol results were maximized and a synergistic effect was generated by the interaction of both oxides. In addition, an increase in acidity crystal size and the generation of localized, oxygen-vacant, electronic states in the forbidden band of γ-Al2O3, were observed. This study focuses on the effect of the calcination temperature on a γ-Al2O3-TiO2 catalyst (15% w/w of TiO2) and its impact on photocatalytic activity. The catalysts prepared here were characterized by X-ray diffraction, N2 adsorption–desorption, FTIR-pyridine adsorption, MAS-NMR, HRTEM-FFT, UV-vis, and fluorescence spectroscopy.
更多
查看译文
关键词
γ-Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub>,acidity,phenol,photodegradation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要