High precision reconstruction for compressed femtosecond dynamics images based on the TVAL3 algorithm

OPTICAL MATERIALS EXPRESS(2022)

引用 3|浏览1
暂无评分
摘要
Compressed sensing (CS) has been successfully demonstrated to reconstruct ultrafast dynamic scenes in ultrafast imaging techniques with large sequence depth. Since compressed ultrafast imaging used a two-step iterative shrinkage/thresholding (TwIST) algorithm in previous image reconstruction, some details of the object will not be recovered when the amount of data compression is large. Here we applied a more efficient Total Variation (TV) minimization scheme based on augmented Lagrangian and alternating direction algorithms (TVAL3) to reconstruct the ultrafast process. In order to verify the effectiveness of the TVAL3 algorithm, we experimentally compare the reconstruction quality of TVAL3 algorithm and TwIST algorithm in an ultrafast imaging system based on compressed-sensing and spectral-temporal coupling active detection with highest frame rate of 4.37 trillion Hz. Both dynamic and static experimental results show that, TVAL3 algorithm can not only reconstruct a rapidly moving light pulse with a more precise profile and more fitted trajectory, but also improve the quality of static objects and the speed of reconstruction. This work will advance the ultrafast imaging techniques based on compressed sensing in terms of image reconstruction quality and reconstruction speed, which finally helps promoting the application of these techniques in areas where high spatial precision is required, such as phase transitions and laser filamentation in nonlinear solids, etc.
更多
查看译文
关键词
femtosecond dynamics images,high precision reconstruction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要