Achieving both large piezoelectric constant and low dielectric loss in BiScO3-PbTiO3–BiO3 high-temperature piezoelectric ceramics

Journal of Advanced Dielectrics(2022)

引用 0|浏览1
暂无评分
摘要
BiScO3–PbTiO3 binary ceramics own both high Curie temperature and prominent piezoelectric properties, while the high dielectric loss needs to be reduced substantially for practical application especially at high temperatures. In this work, a ternary perovskite system of (1–[Formula: see text]–[Formula: see text])BiScO3–[Formula: see text]PbTiO3–[Formula: see text]Bi([Formula: see text][Formula: see text])O3 (BS–[Formula: see text]PT–[Formula: see text]BMS) with [Formula: see text] = 0.005, [Formula: see text] = 0.630–0.645 and [Formula: see text] = 0.015, [Formula: see text] = 0.625–0.640 was prepared by the traditional solid-state reaction method. The phase structure, microstructure, dielectric/piezoelectric/ferroelectric properties were studied. Among BS–[Formula: see text]PT–[Formula: see text]BMS ceramic series, the BS–0.630PT–0.015BMS at morphotropic phase boundary possesses the reduced dielectric loss factor (tan[Formula: see text] = 1.20%) and increased mechanical quality factor ([Formula: see text][Formula: see text] = 84), and maintains a high Curie temperature ( [Formula: see text] = 410[Formula: see text]C) and excellent piezoelectric properties ([Formula: see text][Formula: see text] = 330 pC/N) simultaneously. Of particular importance, at elevated temperature of 200[Formula: see text]C, the value of tan[Formula: see text] is only increased to 1.59%. All these properties indicate that the BS–0.630PT–0.015BMS ceramic has great potential for application in high-temperature piezoelectric devices.
更多
查看译文
关键词
High-temperature piezoelectric ceramics,BiScO3–PbTiO3,morphotropic phase boundary,BiO3
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要