Low temperature processed CO2 laser-assisted RF-sputtered GaN thin film for wide bandgap semiconductors

JOURNAL OF ASIAN CERAMIC SOCIETIES(2023)

引用 0|浏览5
暂无评分
摘要
Owing to its wide bandgap (3.4 eV) and high electron mobility, GaN has attracted significant attention for applications in solar cells, power transistors, and high-electron-mobility transistors. Crystallized GaN thin film can be hardly prepared in thin film form by employing physical vapor deposition processes, such as reactive RF sputtering and pulsed laser deposition, because a high driving energy is required to deposit a thin film due to its high binding energy. Herein, GaN thin films were prepared by CO2 laser-assisted RF sputtering at a relatively low temperature of 200 degrees C. The CO2 laser with a 10,600 nm wavelength shows excellent conversion efficiency from optical energy to thermal energy. At the optimized laser energy density of 0.98 W/mm(2), GaN thin film can have a (0002) orientation with a bandgap energy of 3.26 eV. The crystalline, surface morphological, and optical properties of the fabricated GaN thin films were evaluated using X-ray diffraction, FE-SEM, X-ray photoelectron (XPS), and photoluminescence (PL) spectroscopy, and UV-vis spectrometry. The energy bandgap of the fabricated GaN thin film was measured using the Tauc plot and confirmed via PL. The film composition thus obtained was analyzed using XPS.
更多
查看译文
关键词
CO2 laser, RF-magnetron sputtering, thin films, crystallization, GaN
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要