Femtosecond laser direct writing multilayer chiral waveplates with minimal linear birefringence.

Optics letters(2023)

引用 3|浏览10
暂无评分
摘要
Chirality transfer from femtosecond laser direct writing in achiral transparent materials mainly originates from the interplay between anisotropic nanogratings and mechanical stress with non-parallel and non-perpendicular (oblique) neutral axes. Yet, the laser fabrication simultaneously induces non-negligible linear birefringence. For precise manipulation of circular polarization properties, as well as to unlock the full functionality, we report here a geometry-inspired multilayer method for direct writing of chiral waveplates with minimal linear birefringence. We perform a theoretical analysis of both circular and linear properties response for different multilayer configurations and achieve strong circular birefringence of up to -2.25 rad with an extinction ratio of circular birefringence to total linear birefringence of up to 5.5 dB at 550 nm. Our strategy enables the precise control of circular properties and provides a facile platform for chiral device exploration with almost no linear property existence.
更多
查看译文
关键词
chiral waveplates,direct writing multilayer,laser,femtosecond
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要