Identification of Sea Surface Temperature and Sea Surface Salinity Fronts along the California Coast: Application Using Saildrone and Satellite Derived Products.

Remote Sensing(2023)

引用 1|浏览5
暂无评分
摘要
Coastal upwelling regions are one of the most dynamic areas of the world's oceans. The California and Baja California Coasts are impacted by both coastal upwelling and the California Current, leading to frontal activity that is captured by gradients in both Sea Surface Temperature (SST) and Sea Surface Salinity (SSS). Satellite data are a great source of spatial data to study fronts. However, biases near coastal areas and coarse resolutions can impair its usefulness in upwelling areas. In this work gradients in SST from NASA Multi-Scale Ultra-High Resolution (MUR) and in two SSS products derived from the Soil Moisture Active Passive (SMAP) NASA mission are compared directly with gradients derived from the Saildrone uncrewed vehicles to validate the gradients as well as to assess their ability to detect known frontal features. The three remotely sensed data sets (MURSST/JPL, SMAP SSS/RSS, SMAP SSS) were co-located with the Saildrone data prior to the calculation of the gradients. Wavelet analysis is used to determine how well the satellite derived SST and SSS products are reproducing the Saildrone derived gradients. Overall results indicate the remote sensing products are reproducing features of known areas of coastal upwelling. Differences between the SST and SSS gradients are mainly associated with the limitations of the microwave derived SSS coverage near land and its reduced spatial resolution. The results are promising for using remote sensing data sets to monitor frontal structure along the California Coast and the application to long term changes in coastal upwelling and dynamics.
更多
查看译文
关键词
Sea Surface Salinity,Sea Surface Temperature,fronts,gradients,wavelets
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要