谷歌浏览器插件
订阅小程序
在清言上使用

Structure-Based Design of Dual Bactericidal and Bacteria-Releasing Nanosurfaces

ACS applied materials & interfaces(2023)

引用 2|浏览25
暂无评分
摘要
Here, we report synergistic nanostructured surfaces combining bactericidal and bacteria-releasing properties. A polystyrene-block-poly(methyl methacrylate) (PS-block-PMMA) diblock copolymer is used to fabricate vertically oriented cylindrical PS structures ("PS nanopillars") on silicon substrates. The results demonstrate that the PS nanopillars (with a height of about 10 nm, size of about 50 nm, and spacing of about 70 nm) exhibit highly effective bactericidal and bacteria-releasing properties ("dual properties") against Escherichia coli for at least 36 h of immersion in an E. coli solution. Interestingly, the PS nanopillars coated with a thin layer (approximate to 3 nm thick) of titanium oxide (TiO2) ("TiO2 nanopillars") show much improved dual properties against E. coli (a Gram-negative bacterium) compared to the PS nanopillars. Moreover, the dual properties emerge against Listeria monocytogenes (a Gram-positive bacterium). To understand the mechanisms underlying the multifaceted property of the nanopillars, coarse-grained molecular dynamics (MD) simulations of a lipid bilayer (as a simplified model for E. coli) in contact with a substrate containing hexagonally packed hydrophilic nanopillars were performed. The MD results demonstrate that when the bacterium-substrate interaction is strong, the lipid heads adsorb onto the nanopillar surfaces, conforming the shape of a lipid bilayer to the structure/curvature of nanopillars and generating high stress concentrations within the membrane (i.e., the driving force for rupture) at the edge of the nanopillars. Membrane rupture begins with the formation of pores between nanopillars (i.e., bactericidal activity) and ultimately leads to the membrane withdrawal from the nanopillar surface (i.e., bacteria-releasing activity). In the case of Gram-positive bacteria, the adhesion area to the pillar surface is limited due to the inherent stiffness of the bacteria, creating higher stress concentrations within a bacterial cell wall. The present study provides insight into the mechanism underlying the "adhesion-mediated" multifaceted property of nanosurfaces, which is crucial for the development of next-generation antibacterial surface coatings for relevant medical applications.
更多
查看译文
关键词
bactericidal,bacteria-releasing,nanopatterned surfaces,block copolymers,titanium oxide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要