Impact of Experimental Conditions on Extracellular Vesicles' Proteome: A Comparative Study.

Life (Basel, Switzerland)(2023)

引用 1|浏览17
暂无评分
摘要
Extracellular vesicle (EV) research is a rapidly developing field, mainly due to the key role of EVs in intercellular communication and pathophysiological processes. However, the heterogeneity of EVs challenges their exploration and the establishment of gold-standard methods. Here, we aimed to reveal the influence of technical changes on EV biology and the reliability of experimental data. We used B16F1 melanoma cells as a model and applied nanoparticle tracking analysis, mass spectrometry (LC-MS/MS) and pathway enrichment analysis to analyze the quantity, size distribution, proteome and function of their small EVs (sEVs) produced in sEV-depleted fetal bovine serum (FBS)-containing medium or serum-free medium. Additionally, we investigated the effects of minor technical variances on the quality of sEV preparations. We found that storage of the isolates at -80 °C has no adverse effect on LC-MS/MS analysis, and an additional washing step after differential ultracentrifugation has a minor influence on the sEV proteome. In contrast, FBS starvation affects the production and proteome of sEVs; moreover, these vesicles may have a greater impact on protein metabolism, but a smaller impact on cell adhesion and membrane raft assembly, than the control sEVs. As we demonstrated that FBS starvation has a strong influence on sEV biology, applying serum-free conditions might be considered in in vitro sEV studies.
更多
查看译文
关键词
EV-depleted fetal bovine serum (FBS),FBS starvation,mass spectrometry,nanoparticle tracking analysis (NTA),pathway enrichment analysis,sEV proteome,serum-free medium,small extracellular vesicles (sEVs)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要