In silico design of a multi-epitope vaccine against the spike and the nucleocapsid proteins of the Omicron variant of SARS-CoV-2

Journal of Biomolecular Structure and Dynamics(2023)

引用 3|浏览5
暂无评分
摘要
Computational studies can comprise an effective approach to treating and preventing viral infections. Since 2019, the world has been dealing with the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The most important achievement in this short period of time in the effort to reduce morbidity and mortality was the production of vaccines and effective antiviral drugs. Although the virus has been significantly suppressed, it continues to evolve, spread, and evade the host's immune system. Recently, researchers have turned to immunoinformatics tools to reduce side effects and save the time and cost of traditional vaccine production methods. In the present study, an attempt has been made to design a multi-epitope vaccine with humoral and cellular immune response stimulation against the Omicron variant of SARS-CoV-2 by investigating new mutations in spike (S) and nucleocapsid (N) proteins. The population coverage of the vaccine was evaluated as appropriate compared to other studies. The results of molecular dynamics simulation and molecular mechanics/generalized Born surface area (MM/GBSA) calculations predict the stability and proper interaction of the vaccine with Toll-like receptor 4 (TLR-4) as an innate immune receptor. The results of the immune simulation show a significant increase in the coordinated response of IgM and IgG after the third injection of the vaccine. Also, in the continuation of the research, spike proteins from BA.4 and BA.5 lineages were screened by immunoinformatics filters and effective epitopes were suggested for vaccine design. Despite the high precision of computational studies, in-vivo and in-vitro research is needed for final confirmation.Communicated by Ramaswamy H. Sarma
更多
查看译文
关键词
SARS-CoV-2,Omicron,vaccine design,pET28a (+) vector,MD simulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要