Chrome Extension
WeChat Mini Program
Use on ChatGLM

Trend Feature Consistency Guided Deep Learning Method for Minor Fault Diagnosis

Entropy(2023)

Cited 2|Views6
No score
Abstract
Deep learning can be applied in the field of fault diagnosis without an accurate mechanism model. However, the accurate diagnosis of minor faults using deep learning is limited by the training sample size. In the case that only a small number of noise-polluted samples is available, it is crucial to design a new learning mechanism for the training of deep neural networks to make it more powerful in feature representation. The new learning mechanism for deep neural networks model is accomplished by designing a new loss function such that accurate feature representation driven by consistency of trend features and accurate fault classification driven by consistency of fault direction both can be secured. In such a way, a more robust and more reliable fault diagnosis model using deep neural networks can be established to effectively discriminate those faults with equal or similar membership values of fault classifiers, which is unavailable for traditional methods. Validation for gearbox fault diagnosis shows that 100 training samples polluted with strong noise are adequate for the proposed method to successfully train deep neural networks to achieve satisfactory fault diagnosis accuracy, while more than 1500 training samples are required for traditional methods to achieve comparative fault diagnosis accuracy.
More
Translated text
Key words
deep learning,minor fault,trend feature consistency,fault orientation consistency,small sample size
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined