An Unsupervised SAR and Optical Image Fusion Network Based on Structure-Texture Decomposition.

Yuanxin Ye, Wanchun Liu,Liang Zhou, Tao Peng,Qizhi Xu

IEEE Geosci. Remote. Sens. Lett.(2022)

引用 5|浏览26
暂无评分
摘要
Although the unique advantages of optical and synthetic aperture radar (SAR) images promote their fusion, the integration of complementary features from the two types of data and their effective fusion remains a vital problem. To address that, a novel framework is designed based on the observation that the structure of SAR images and the texture of optical images look complementary. The proposed framework, named SOSTF, is an unsupervised end-to-end fusion network that aims to integrate structural features from SAR images and detailed texture features from optical images into the fusion results. The proposed method adopts the nest connect-based architecture, including an encoder network, a fusion part, and a decoder network. To maintain the structure and texture information of input images, the encoder architecture is utilized to extract multiscale features from images. Then, we use the densely connected convolutional network (DenseNet) to perform feature fusion. Finally, we reconstruct the fusion image using a decoder network. In the training stage, we introduce a structure-texture decomposition model. In addition, a novel texture-preserving and structure-enhancing loss function are designed to train the DenseNet to enhance the structure and texture features of fusion results. Qualitative and quantitative comparisons of the fusion results with nine advanced methods demonstrate that the proposed method can fuse the complementary features of SAR and optical images more effectively.
更多
查看译文
关键词
Image fusion,SOSTF,synthetic aperture radar (SAR) and optical images,unsupervised
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要