Characteristics of hydrogen separation and methane steam reforming in a Pd-based membrane reactor of shell and tube design

Case Studies in Thermal Engineering(2023)

引用 1|浏览0
暂无评分
摘要
This work investigates numerically the characteristics of the two process, hydrogen separation and steam methane reforming (SMR), in a palladium-based (Inconel-supported Pd–Ag film) membrane reactor (MR) of porous reformer (30% Ni/Al2O3) shell and multi-tube design. Still parameters like reactor design and temperature, feed gas concentration and pressure, and flow configuration need more investigation to figure out their impact on hydrogen production rate at lower energy cost and minimum possible volume. This work targets optimization of reactor performance for higher hydrogen yield and coming up with a scalable optimized reactor design for industrial applications. First, an optimization study is performed under non-reforming (separation-only) conditions to optimize the MR design and operating parameters for higher hydrogen production. Then, the study is extended to consider hydrogen separation under SMR conditions to come up with a MR design for hydrogen production at the industrial scale. Hydrogen permeation is limited to small zone near the membrane surface with no effect of feed pressure, inlet gas temperature, and feed hydrogen concentration on widening such zone that necessitates reducing the pitch distance between membrane tubes below 22 mm. The results showed reduced hydrogen permeation rate under SMR conditions compared to the separation-only cases.
更多
查看译文
关键词
Hydrogen separation,Porous reactor,Pd-based membranes,Membrane reactor,Steam methane reforming,CFD modeling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要