谷歌浏览器插件
订阅小程序
在清言上使用

Signature of weakly coupled f electrons and conduction electrons in magnetic Weyl semimetal candidates PrAlSi and SmAlSi

Physical review B/Physical review B(2023)

引用 2|浏览46
暂无评分
摘要
Magnetic topological materials are a class of compounds with the underlying interplay of nontrivial band topology and magnetic spin configuration. Extensive interest has been aroused due to their application potential involved with an array of exotic quantum states. With angle-resolved photoemission spectroscopy and first -principles calculations, here we study the electronic properties of two magnetic Weyl semimetal candidates, PrAlSi and SmAlSi. Though the two compounds harbor distinct magnetic ground states (ferromagnetic and antiferromagnetic for PrAlSi and SmAlSi, respectively) and 4 f shell fillings, we find that they share a quite analogous low-energy band structure. By measurements across the magnetic transitions, we further reveal that there is no evident evolution of the band structure in both compounds and the experimental spectra can be well reproduced by the nonmagnetic calculations, together suggesting a negligible effect of the magnetism on their electronic structures and a possibly weak coupling between the localized 4 f electrons and the itinerant conduction electrons. Our results offer essential insights into the interactions between magnetism, electron correlations, and topological orders in the RAlX (R = light rare earth and X = Si or Ge) family.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要