Deeper neural network models better reflect how humans cope with contrast variation in object recognition.

Neuroscience research(2023)

引用 1|浏览11
暂无评分
摘要
Visual inputs are far from ideal in everyday situations such as in the fog where the contrasts of input stimuli are low. However, human perception remains relatively robust to contrast variations. To provide insights about the underlying mechanisms of contrast invariance, we addressed two questions. Do contrast effects disappear along the visual hierarchy? Do later stages of the visual hierarchy contribute to contrast invariance? We ran a behavioral experiment where we manipulated the level of stimulus contrast and the involvement of higher-level visual areas through immediate and delayed backward masking of the stimulus. Backward masking led to significant drop in performance in our visual categorization task, supporting the role of higher-level visual areas in contrast invariance. To obtain mechanistic insights, we ran the same categorization task on three state-of the-art computational models of human vision each with a different depth in visual hierarchy. We found contrast effects all along the visual hierarchy, no matter how far into the hierarchy. Moreover, that final layers of deeper hierarchical models, which had been shown to be best models of final stages of the visual system, coped with contrast effects more effectively. These results suggest that, while contrast effects reach the final stages of the hierarchy, those stages play a significant role in compensating for contrast variations in the visual system.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要