谷歌浏览器插件
订阅小程序
在清言上使用

Catalytically Active Metal-Organic Frameworks Elicit Robust Immune Response to Combination Chemodynamic and Checkpoint Blockade Immunotherapy.

ACS applied materials & interfaces(2023)

引用 7|浏览7
暂无评分
摘要
Chemodynamic therapy (CDT) strategies rely on the generation of reactive oxygen species (ROS) to kill tumor cells, with hydroxyl radicals (•OH) serving as the key mediators of cytotoxicity in this setting. However, the efficacy of CDT approaches is often hampered by the properties of the tumor microenvironment (TME) and associated limitations to the Fenton reaction that constrains ROS generation. As such, there is a pressing need for the design of new nanoplatforms capable of improving CDT outcomes. In this study, an Fc-based metal-organic framework (MOF) vitamin k3 (Vk3)-loaded cascade catalytic nanoplatform (Vk3@Co-Fc) was developed. This platform was capable of undergoing TME-responsive degradation without impacting normal cells. After its release, Vk3 was processed by nicotinamide adenine dinucleotide hydrogen phosphate (NAD(P)H) quinone oxidoreductase-1 (NQO1), which is highly expressed in tumor cells, thereby yielding large quantities of H2O2 that in turn interact with Fe ions via the Fenton reaction to facilitate in situ cytotoxic •OH production. This process leads to immunogenic cell death (ICD) of the tumor, which then promotes dendritic cell maturation and ultimately increases T cell infiltration into the tumor site. When this nanoplatform was combined with programmed death 1 (PD-1) checkpoint blockade approaches, it was sufficient to enhance tumor-associated immune responses in breast cancer as evidenced by increases in the frequencies of CD45+ leukocytes and CD8+ cytotoxic T lymphocytes, thereby inhibiting tumor metastasis to the lungs and improving murine survival outcomes. Together, this Vk3@Co-Fc cascading catalytic nanoplatform enables potent cancer immunotherapy for breast cancer regression and metastasis prevention.
更多
查看译文
关键词
cascade catalytic reactions,chemodynamic therapy,immunotherapy,DC maturation,breast cancer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要