Unsupervised Entity Alignment for Temporal Knowledge Graphs

WWW 2023(2023)

引用 13|浏览88
暂无评分
摘要
Entity alignment (EA) is a fundamental data integration task that identifies equivalent entities between different knowledge graphs (KGs). Temporal Knowledge graphs (TKGs) extend traditional knowledge graphs by introducing timestamps, which have received increasing attention. State-of-the-art time-aware EA studies have suggested that the temporal information of TKGs facilitates the performance of EA. However, existing studies have not thoroughly exploited the advantages of temporal information in TKGs. Also, they perform EA by pre-aligning entity pairs, which can be labor-intensive and thus inefficient. In this paper, we present DualMatch which effectively fuses the relational and temporal information for EA. DualMatch transfers EA on TKGs into a weighted graph matching problem. More specifically, DualMatch is equipped with an unsupervised method, which achieves EA without necessitating seed alignment. DualMatch has two steps: (i) encoding temporal and relational information into embeddings separately using a novel label-free encoder, Dual-Encoder; and (ii) fusing both information and transforming it into alignment using a novel graph-matching-based decoder, GM-Decoder. DualMatch is able to perform EA on TKGs with or without supervision, due to its capability of effectively capturing temporal information. Extensive experiments on three real-world TKG datasets offer the insight that DualMatch outperforms the state-of-the-art methods in terms of H@1 by 2.4% - 10.7% and MRR by 1.7% - 7.6%, respectively.
更多
查看译文
关键词
unsupervised entity alignment,knowledge
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要