Flexible-to-Stretchable Mechanical and Electrical Interconnects.

ACS applied materials & interfaces(2023)

引用 5|浏览7
暂无评分
摘要
Stretchable electronic devices that maintain electrical function when subjected to stress or strain are useful for enabling new applications for electronics, such as wearable devices, human-machine interfaces, and components for soft robotics. Powering and communicating with these devices is a challenge. NFC (near-field communication) coils solve this challenge but only work efficiently when they are in close proximity to the device. Alternatively, electrical signals and power can arrive via physical connections between the stretchable device and an external source, such as a battery. The ability to create a robust physical and electrical connection between mechanically disparate components may enable new types of hybrid devices in which at least a portion is stretchable or deformable, such as hinges. This paper presents a simple method to make mechanical and electrical connections between elastomeric conductors and flexible (or rigid) conductors. The adhesion at the interface between these disparate materials arises from surface chemistry that forms strong covalent bonds. The utilization of liquid metals as the conductor provides stretchable interconnects between stretchable and non-stretchable electrical traces. The liquid metal can be printed or injected into vias to create interconnects. We characterized the mechanical and electrical properties of these hybrid devices to demonstrate the concept and identify geometric design criteria to maximize mechanical strength. The work here provides a simple and general strategy for creating mechanical and electrical connections that may find use in a variety of stretchable and soft electronic devices.
更多
查看译文
关键词
3D printing,interfacial bonding,liquid metals,microfluidics,silicones,stretchable electronics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要