谷歌浏览器插件
订阅小程序
在清言上使用

P-Terphenyl-based Rigid Stationary Phases with Embedded Polar Groups for Liquid Chromatography.

JOURNAL OF CHROMATOGRAPHY A(2023)

引用 2|浏览12
暂无评分
摘要
Terphenyls are important building blocks for a wide range of functional molecules. Among the three isomers, p-terphenyl (C18H14) is particularly useful for the construction of optical devices on account of its unique structure. Herein, two rigid stationary phases bearing p-terphenyl as an external moiety and variable embedded carbamate groups (p-TerC with one embedded carbamate group and p-TerC2 with two embedded carbamate group) were presented. The proposed stationary phases were characterized by various means and evaluated in reversed-phase (RP) mode, using different classes of analytes, including polycyclic aromatic hydrocarbons (PAHs), alkylbenzenes, 4-alkylbiphenyls, substituted ureas, sulfonylureas, substituted sulfanilamides and aromatic acids. The comparison with conventional C18, several other polar-embedded aromatic and C18 equivalents indicated p-terphenyl-based stationary phases were featured by multiple retention mechanisms, involving π-π interaction, charge-transfer interaction, hydrogen-bonding and hydrophobic interaction in RP mode. A unusually high specificity to the analytes with linear structures was observed, as exemplified by an irreversible adsorption of tetracene and a readily separation of tetraphene and chrysene. The aliphatic linker used in the proposed stationary phases was an influential factor for retentivity, selectivity and column efficiency. Interestingly, p-TerC2 was operable in normal-phase mode for the separation of certain PAHs through polar-related interactions. The linear, rigid polyphenyl structure of p-terphenyl endowed the new stationary phase with distinctive chromatographic properties, in contrast to those of the preceding counterparts bonded with alkyl and/or polynuclear aromatic moieties.
更多
查看译文
关键词
Chiral Stationary Phases
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要