Diagnostic Accuracy of Arterial Spin-Labeling, Dynamic Contrast-Enhanced, and DSC Perfusion Imaging in the Diagnosis of Recurrent High-Grade Gliomas: A Prospective Study.

AJNR. American journal of neuroradiology(2023)

引用 1|浏览11
暂无评分
摘要
BACKGROUND AND PURPOSE:For patients with high-grade gliomas, the appearance of a new, enhancing lesion after surgery and chemoradiation represents a diagnostic dilemma. We hypothesized that MR perfusion without and with contrast can differentiate tumor recurrence from radiation necrosis. MATERIALS AND METHODS:In this prospective study, we performed 3 MR perfusion methods: arterial spin-labeling, DSC, and dynamic contrast enhancement. For each lesion, we measured CBF from arterial spin-labeling, uncorrected relative CBV, and leakage-corrected relative CBV from DSC imaging. The volume transfer constant and plasma volume were obtained from dynamic contrast-enhanced imaging without and with T1 mapping using modified Look-Locker inversion recovery (MOLLI). The diagnosis of tumor recurrence or radiation necrosis was determined by either histopathology for patients who underwent re-resection or radiologic follow-up for patients who did not have re-resection. RESULTS:There were 26 patients with 32 lesions, 19 lesions with tumor recurrence and 13 lesions with radiation necrosis. Compared with radiation necrosis, lesions with tumor recurrence had higher CBF ( PPPrsrsrsPCONCLUSIONS:In the differentiation of tumor recurrence from radiation necrosis in a newly enhancing lesion, the diagnostic value of arterial spin-labeling-derived CBF is similar to that of DSC and dynamic contrast-enhancement-derived blood volume.
更多
查看译文
关键词
dsc perfusion imaging,diagnostic,spin-labeling,contrast-enhanced,high-grade
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要