Ultrafast Energy Transfer Process in Confined Gold Nanospheres Revealed by Femtosecond X-ray Imaging and Diffraction.

Nano letters(2023)

引用 1|浏览10
暂无评分
摘要
Femtosecond laser pulses drive nonequilibrium phase transitions via reaction paths hidden in thermal equilibrium. This stimulates interest to understand photoinduced ultrafast melting processes, which remains incomplete due to challenges in resolving accompanied kinetics at the relevant space-time resolution. Here, by newly establishing a multiplexing femtosecond X-ray probe, we have successfully revealed ultrafast energy transfer processes in confined Au nanospheres. Real-time images of electron density distributions with the corresponding lattice structures elucidate that the energy transfer begins with subpicosecond melting at the specimen boundary earlier than the lattice thermalization, and proceeds by forming voids. Two temperature molecular dynamics simulations uncovered the presence of both heterogeneous melting with the melting front propagation from surface and grain boundaries and homogeneous melting with random melting seeds and nanoscale voids. Supported by experimental and theoretical results, we provide a comprehensive atomic-scale picture that accounts for the ultrafast laser-induced melting and evaporation kinetics.
更多
查看译文
关键词
Confined nanoparticle,Nonequilibrium phase transition,Single-particle imaging,Ultrafast energy transfer,X-ray free electron laser
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要