Fragment Molecular Orbital Based Affinity Prediction toward Pyruvate Dehydrogenase Kinases: Insights into the Charge Transfer in Hydrogen Bond Networks.

Chemical & pharmaceutical bulletin(2023)

引用 0|浏览8
暂无评分
摘要
The fragment molecular orbital (FMO) method is a fast quantum-mechanics method that divides systems into pieces of fragments and performs ab initio calculations. The method has been expected to improve the accuracy of describing protein-ligand interactions by incorporating electronic effects. In this article, FMO calculation with solvation methods were applied to the affinity prediction at the ATP-binding site of PDHK4. As the ionized aspartic acid lies at the center and is involved in the complex hydrogen bond networks, this system has turned out to be a difficult target to describe by traditional molecular-mechanics method. In the FMO calculation with the polarizable continuum model (PCM) solvation method, a considerable amount of charge (-0.27e) was transferred from the ionized aspartate to the surrounding residues. We found that using FMO with the PCM solvation method was important to increase the correlation, and by incorporating the ligand deformation energy, the correlation was improved to R = 0.81 for whole twelve compounds and R = 0.91 without one outlier compound.
更多
查看译文
关键词
charge transfer,fragment molecular orbital,hydrogen bond network,implicit solvation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要