Purification of the secondary treatment tail water for wastewater reclamation by integrated subsurface-constructed wetlands

ENVIRONMENTAL TECHNOLOGY(2024)

引用 1|浏览1
暂无评分
摘要
A whole-year investigation of full-scale integrated subsurface-constructed wetlands (ISCWs) was carried out to purify the tail water from a wastewater treatment plant (WWTP) for wastewater reclamation under four plant species, four hydraulic loading rates (HLRs), and four seasons. The results showed that ISCWs were effective for the purification of WWTP discharge, with the average removal efficiencies of COD, NH4+-N, TN, and TP being 48%, 49%, 9%, and 30%, respectively. Typical pollutant concentrations in the treated effluent of ISCWs were 8.19 mg/L COD, 1.76 mg/L NH4+-N, 11.57 mg/L TN, and 0.36 mg/L TP, which met most of the water quality standards for reusing recycling water. Emergent plants with well-developed root systems may be capable of promoting the decontamination of ISCWs. Seasonal change played an important role in the treatment process: the removal of phosphorus by plant uptake and microbial utilization was more active in the warm season and the co-occurrence of organic degradation and nitrification, whereas the cold season is conducive to exothermic adsorption process of pollutants to substrates. Properly increasing the HLRs may improve the availability of ISCWs according to the requirement of effluent quality. Furthermore, the C/N ratio might be the key factor for the purification effect of ISCWs, because the COD level of WWTP discharge may change the process of NH4+-N biotransformation.
更多
查看译文
关键词
Artificial wetland,wastewater treatment plant effluent,advanced purification,impact factor,recycling water
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要