Scenario-based Question Answering with Interacting Contextual Properties

ICLR 2023(2023)

引用 0|浏览122
暂无评分
摘要
In the scenario-based Question Answering (QA) task, models are asked to find answers that are appropriate to the user scenarios associated with the question and identify information that is missing from the scenarios but is necessary for the answers to hold. Scenarios commonly include multiple properties of users, such as age, employment status, and income level for the question “How much can I claim from this benefit”. The properties relevant to a potential answer are given in a document, which will state conditions necessary for the answer to hold. Documents also may specify how conditions interact with each other, e.g. with text like “one of the conditions below must apply”. Although understanding the relationship between conditions is crucial for solving this challenging QA task, limited work has been done so far in modeling this. In this paper, we propose the T-Reasoner model, which solves this problem with three jointly learned modules: an entailment module which checks whether a condition has been satisfied by the scenario, a decoding module which locates eligible answers from documents, and a reasoning module which infers the relationship between conditions and performs a reasoning step to determine the logically consistent answers and identify missing conditions. T-Reasoner outperforms strong baselines on a synthetic scenario-based QA dataset and achieves a new state-of-the-art on two scenario-based QA benchmarks, outperforming the prior best models by 3-10 points.
更多
查看译文
关键词
Question Answering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络