Spatial uncertainty and environmental geometry in navigation.

biorxiv(2023)

引用 3|浏览12
暂无评分
摘要
Variations in the geometry of the environment, such as the shape and size of an enclosure, have profound effects on navigational behavior and its neural underpinning. Here, we show that these effects arise as a consequence of a single, unifying principle: to navigate efficiently, the brain must maintain and update the uncertainty about one's location. We developed an image-computable Bayesian ideal observer model of navigation, continually combining noisy visual and self-motion inputs, and a neural encoding model optimized to represent the location uncertainty computed by the ideal observer. Through mathematical analysis and numerical simulations, we show that the ideal observer accounts for a diverse range of sometimes paradoxical distortions of human homing behavior in anisotropic and deformed environments, including 'boundary tethering', and its neural encoding accounts for distortions of rodent grid cell responses under identical environmental manipulations. Our results demonstrate that spatial uncertainty plays a key role in navigation.
更多
查看译文
关键词
spatial uncertainty,environmental geometry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要