Oxidative lipidomics to elucidate the non-volatile derivatives of four typical triglycerides in vegetable oils under simulated frying conditions.

Food chemistry(2023)

引用 2|浏览10
暂无评分
摘要
Vegetable oils with different saturations have varied composition of triglycerides (TGs) and produce different non-volatile derivatives during oxidation. Precise characterization of the non-volatile derivatives of TGs is essential for understanding the degradation of TGs and the production pattern of non-volatile derivatives. Oxidative lipidomics was combined with collision-induced dissociation and electron-activated dissociation to elucidate the precise structures of non-volatile derivatives produced under simulated frying conditions by 1,3-dipalmitoyl-2-oleoylglycerol (POP), triolein (OOO), trilinolein (LLL), and trilinolenin (LnLnLn). The results indicate that the unsaturated fatty acyl chains at the sn-2 position were more susceptible to oxidation compared with those at the sn-1/3 position. Species of non-volatile derivatives included epoxy-, hydroperoxy-, hydroxy-, and oxo-TGs, as well as degradation products. The potential reaction pathways of TGs and their non-volatile derivatives were also proposed. This study elucidated oxidative degradation mechanisms of the four typical TGs and provided a theoretical basis for changes of vegetable oils during frying.
更多
查看译文
关键词
Electron-activated dissociation,Frying oil,Lipidomics,Structure analysis,Triglycerides
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要