Laser transparent multiplexed SERS microneedles for in situ and real-time detection of inflammation

BIOSENSORS & BIOELECTRONICS(2023)

Cited 11|Views21
No score
Abstract
It is a significant challenge to perform painless invasive detection of inflammation progression in relation to the evolution of pH, redox potential, and reactive oxygen species (ROS) levels in an in situ and real-time manner. In this work, polydopamine-modified, silver nanoparticle-decorated poly (methyl methacrylate) microneedles (AgNPs@PDA@MNs) have been developed as a multiplexed surface enhanced Raman scattering (SERS) diag-nostic platform. Using rhodamine 6G as the Raman signal molecule, the AgNPs@PDA@MNs demonstrated a significant enhancement with reasonable linearity in the range of 10-3-10-9 mol/L and the limit of detection is 1.0 x 10-10 mol/L 4-mercaptobenzoic acid, anthraquinone-2-carboxylic acid and para-aminothiophenol were covalently anchored on AgNPs@PDA@MNs SERS substrate. I1143/I1183, I1606/I1667 and I1143/I1077 were used as assay standards for pH, redox potential and ROS level detection, respectively. The SERS multiplexed transparent microneedles (SERS mtMNs) linearly responded to pH in the range of 4.0-8.0, redox potential in the range of 417.0-599.8 mV, and ROS levels in the range of 0-480 ng/mL, demonstrating a significant ability to detect complex inflammation in vivo, in situ and in real-time.
More
Translated text
Key words
Inflammation,Microneedles,pH,Reactive oxygen species level,Redox potential,Surface-enhanced Raman scattering
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined