Wide-field CO isotopologue emission and the CO-to-H$_2$ factor across the nearby spiral galaxy M101

arxiv(2023)

引用 0|浏览43
暂无评分
摘要
Carbon monoxide (CO) emission is the most widely used tracer of the bulk molecular gas in the interstellar medium (ISM) in extragalactic studies. The CO-to-H$_2$ conversion factor, $\alpha_{\rm CO}$, links the observed CO emission to the total molecular gas mass. However, no single prescription perfectly describes the variation of $\alpha_{\rm CO}$ across all environments across galaxies as a function of metallicity, molecular gas opacity, line excitation, and other factors. Using resolved spectral line observations of CO and its isotopologues, we can constrain the molecular gas conditions and link them to a variation in the conversion factor. We present new IRAM 30-m 1mm and 3mm line observations of $^{12}$CO, $^{13}$CO, and C$^{18}$O} across the nearby galaxy M101. Based on the CO isotopologue line ratios, we find that selective nucleosynthesis and opacity changes are the main drivers of the variation in the line emission across the galaxy. Furthermore, we estimated $\alpha_{\rm CO(1-0)}$ using different approaches, including (i) the dust mass surface density derived from far-IR emission as an independent tracer of the total gas surface density and (ii) LTE-based measurements using the optically thin $^{13}$CO(1-0) intensity. We find an average value of $\alpha_{\rm CO}=4.4{\pm}0.9\rm\,M_\odot\,pc^{-2}(K\,km\,s^{-1})^{-1}$ across the galaxy, with a decrease by a factor of 10 toward the 2 kpc central region. In contrast, we find LTE-based values are lower by a factor of 2-3 across the disk relative to the dust-based result. Accounting for $\alpha_{\rm CO}$ variations, we found significantly reduced molecular gas depletion time by a factor 10 in the galaxy's center. In conclusion, our result suggests implications for commonly derived scaling relations, such as an underestimation of the slope of the Kennicutt Schmidt law, if $\alpha_{\rm CO}$ variations are not accounted for.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要