An extreme learning machine optimized by differential evolution and artificial bee colony for predicting the concentration of whole blood with Fourier Transform Raman spectroscopy.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy(2023)

引用 6|浏览18
暂无评分
摘要
Raman spectroscopy, with its advantages of non-contact nature, rapid detection, and minimum water interference, is promising for non-invasive blood detection or diagnosis in clinic applications. However, there is a critical issue that how to accurately analyze blood composition by Raman spectroscopy. In this study, we apply extreme learning machine (ELM) algorithm and a multivariate calibration regression model to analyze the results from Raman spectroscopy and determine the component's concentrations in blood samples, including glucose, cholesterol, and triglyceride. Self-adaption differential evolution artificial bee colony (SADEABC) algorithm was further applied to increase the data's accuracy and robustness. The obtained data for coefficient of determination, root mean square error of calibration, root mean square error of prediction, and relative percent deviation, were 0.9822, 0.3993, 0.3827, and 6.6679 for glucose, 0.9786, 0.2104, 0.2088 and 5.9533 for cholesterol, and 0.9921, 0.2744, 0.3433 and 10.5075 for triglyceride, respectively. Results demonstrated that the model based on SADEABC-ELM show much better prediction data than those models based on the ELM and ABC-ELM.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要