Accurate and Interpretable Dipole Interaction Model-Based Machine Learning for Molecular Polarizability.

Chaoqiang Feng, Jin Xi,Yaolong Zhang,Bin Jiang,Yong Zhou

Journal of chemical theory and computation(2023)

引用 1|浏览7
暂无评分
摘要
Polarizabilities play significant roles in describing dispersive and inductive interactions of the atom and molecular systems. However, an accurate prediction of molecular polarizabilities from first principles is computationally prohibitive. Although physical models or statistical machine learning models have been proposed, either a lack of accurate description of local chemical environments or demanding a large number of samples for training has limited their practical applications. In this study, we combine a physically inspired dipole interaction model and an accurate neural network method for predicting the polarizability tensors of molecules. With the local chemical environment precisely described and the requirement of rotational covariance naturally fulfilled, this hybrid model is proven to give an accurate molecular polarizability prediction, essentially reducing the number of training samples. The atomic polarizabilities are physically interpretable and transferable to larger molecules unseen in the training set. This promising method may find its wide range of applications, such as spectroscopic simulations and the construction of polarizable force fields.
更多
查看译文
关键词
machine learning,model-based
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要