PBAT/PLA humic acid biodegradable film applied on solar greenhouse tomato plants increased lycopene and decreased total acid contents

Science of The Total Environment(2023)

引用 4|浏览63
暂无评分
摘要
This work aims to resolve residual film pollution in farmlands and improve tomato quality. The mechanical properties and degradation of PBAT/PLA lignin (MZS) and PBAT/PLA humic acid (FZS) composite biodegradable film were analyzed, and its effect on soil temperature and humidity, soil microorganisms, soil physical and chemical properties, tomato yield, and quality was studied. Polyethylene film (PE) was used as a control. The results demonstrate a higher degradation degree of FZS film than of MZS film. The degradation degree of FZS and MZS films reached level 2 and level 1, respectively, after 131 days of film covering. The weight loss rate of FZS and MZS films reached 52.74 % and 57.82 %, respectively, when buried for 160 days. Compared to the coverings of PE and MZS films, FZS film could significantly increase the soil's electric conductivity and organic matter content (p < 0.05). The relative abundance of soil fungi Chaetomium also increased. The yield, soluble solids, vitamin C (Vc), soluble sugar, and lycopene of tomato plants covered with FZS film significantly increased by 6.74 %, 8.75 %, 15.41 %, 8.30 %, and 27.27 % compared to plants covered with PE film, and the total acid and hardness significantly decreased by 24.95 % and 8.46 %, respectively (p < 0.05). Using 10 μm PBAT/PLA humic acid biodegradable film for tomato cultivation in autumn and winter increased the lycopene and decreased the total acid content by changing the soil's physical and chemical characteristics and increasing the content of Chaetomium soil.
更多
查看译文
关键词
Humic acid,Biodegradable film,Solar greenhouse,Tomato,Lycopene,Total acid
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要