Chrome Extension
WeChat Mini Program
Use on ChatGLM

Covalently Grafted Biomimetic Matrix Reconstructs the Regenerative Microenvironment of the Porous Gradient Polycaprolactone Scaffold to Accelerate Bone Remodeling

SMALL(2023)

Cited 4|Views34
No score
Abstract
Integrating a biomimetic extracellular matrix to improve the microenvironment of 3D printing scaffolds is an emerging strategy for bone substitute design. Here, a "soft-hard" bone implant (BM-g-DPCL) consisting of a bioactive matrix chemically integrated on a polydopamine (PDA)-coated porous gradient scaffold by polyphenol groups is constructed. The PDA-coated "hard" scaffolds promoted Ca2+ chelation and mineral deposition; the "soft" bioactive matrix is beneficial to the migration, proliferation, and osteogenic differentiation of stem cells in vitro, accelerated endogenous stem cell recruitment, and initiated rapid angiogenesis in vivo. The results of the rabbit cranial defect model (Φ = 10 mm) confirmed that BM-g-DPCL promoted the integration between bone tissue and implant and induced the deposition of bone matrix. Proteomics confirmed that cytokine adhesion, biomineralization, rapid vascularization, and extracellular matrix formation are major factors that accelerate bone defect healing. This strategy of highly chemically bonded soft-hard components guided the construction of the bioactive regenerative scaffold.
More
Translated text
Key words
Polymeric Scaffolds,Scaffold Fabrication,Bone Regeneration
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined