Synthesis and structure-activity optimization of 7-azaindoles containing aza-β-amino acids targeting the influenza PB2 subunit.

European journal of medicinal chemistry(2023)

引用 0|浏览12
暂无评分
摘要
The PB2 subunit of influenza virus polymerase has been demonstrated as a promising drug target for anti-influenza therapy. In this work, 7-azaindoles containing aza-β3- or β2,3 -amino acids were synthesized possessing a good binding affinity of PB2. The aza-β-amino acid moieties with diverse size, shape, steric hindrance and configuration were investigated. Then a lead HAA-09 was validated, and the attached aza-β3-amino acid moiety with acyclic tertiary carbon side chain well occupied in the key hydrophobic cavity of PB2_cap binding domain. Importantly, HAA-09 displays potent polymerase inhibition capacity, low cytotoxicity (selectivity index up to 2915) as well as robust anti-viral activity against A/WSN/33 (H1N1) virus and oseltamivir-resistant H275Y variant. Moreover, HAA-09 exhibited druggability with high plasma stability (t1/2 ≥ 12 h) and no obvious hERG inhibition (IC50 > 10 μM). Also, HAA-09 demonstrated a favorable safety profile when orally administrated in healthy mice at a high dose of 40 mg/kg QD for consecutive 3 days. Besides, in vivo therapeutic efficacy (85.7% survival observed at the day 15 post infection) was demonstrated when HAA-09 was administrated orally at 12.5 mg/kg BID starting 48 h post infection for 9 days. These data support that exploring the interactions between side chains on aza-β3- or β2,3 -amino acid moieties and hydrophobic pocket of PB2_cap binding domain is a potential medicinal chemistry strategy for developing potent PB2 inhibitors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要