Genome skimming elucidates the evolutionary history of Octopoda.

Molecular phylogenetics and evolution(2023)

引用 6|浏览12
暂无评分
摘要
Phylogenies for Octopoda have, until now, been based on morphological characters or a few genes. Here we provide the complete mitogenomes and the nuclear 18S and 28S ribosomal genes of twenty Octopoda specimens, comprising 18 species of Cirrata and Incirrata, representing 13 genera and all five putative families of Cirrata (Cirroctopodidae, Cirroteuthidae, Grimpoteuthidae, Opisthoteuthidae and Stauroteuthidae) and six families of Incirrata (Amphitretidae, Argonautidae, Bathypolypodidae, Eledonidae, Enteroctopodidae, and Megaleledonidae) which were assembled using genome skimming. Phylogenetic trees were built using Maximum Likelihood and Bayesian Inference with several alignment matrices. All mitochondrial genomes had the 'typical' genome composition and gene order previously reported for octopodiforms, except Bathypolypus ergasticus, which appears to lack ND5, two tRNA genes that flank ND5 and two other tRNA genes. Argonautoidea was revealed as sister to Octopodidae by the mitochondrial protein-coding gene dataset, however, it was recovered as sister to all other incirrate octopods with strong support in an analysis using nuclear rRNA genes. Within Cirrata, our study supports two existing classifications suggesting neither is likely in conflict with the true evolutionary history of the suborder. Genome skimming is useful in the analysis of phylogenetic relationships within Octopoda; inclusion of both mitochondrial and nuclear data may be key.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要