Boosted ab initio Cryo-EM 3D Reconstruction with ACE-EM

arxiv(2023)

引用 0|浏览40
暂无评分
摘要
The central problem in cryo-electron microscopy (cryo-EM) is to recover the 3D structure from noisy 2D projection images which requires estimating the missing projection angles (poses). Recent methods attempted to solve the 3D reconstruction problem with the autoencoder architecture, which suffers from the latent vector space sampling problem and frequently produces suboptimal pose inferences and inferior 3D reconstructions. Here we present an improved autoencoder architecture called ACE (Asymmetric Complementary autoEncoder), based on which we designed the ACE-EM method for cryo-EM 3D reconstructions. Compared to previous methods, ACE-EM reached higher pose space coverage within the same training time and boosted the reconstruction performance regardless of the choice of decoders. With this method, the Nyquist resolution (highest possible resolution) was reached for 3D reconstructions of both simulated and experimental cryo-EM datasets. Furthermore, ACE-EM is the only amortized inference method that reached the Nyquist resolution.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要